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Abstract

The L norm has been widely studied as a criterion for curveF fitting problems. This paper presents an algorithm to solve discrete approx-

imation problems in the L. norm. The algorithm is a special-purpose linear

programming dual method which employs a reduced basis and multiple pivots.

12 Results of the computational experience with a computer code version of the

algorithm are presented.
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1. Introduction and Problem Statement.

The L. norm problem, also called minimax and the Chebychev

problem, has been widely studied as a criterion for curve fitting.

This procedure minimizes the maximum residual, and is particularly

well suited to problems found in numerical analysis (Rabinowitz (1968)),

where a typical application arises when values are truncated to a fixed

number of decimal places; and the resulting errors due to round-off

are assumed to have an underlying uniform distribution. Of particular

interest in numerical analysis is the error between the approximation

of a function and the true function. It is desirable to place a

bound on the error, and in the absence of a priori knowledge of

what the numbers involved will be, it seems reasonable to allow for

the worst case. Then the goal is to utilize a procedure, for approx-

imating the function, which produces the minimum maximum error, hence

the minimax or L norm method (see Ralston (1965)).

Although other procedures are more popular for "statistical

data analysis," the L norm may be useful in identifying outliers

(Sposito (1976)). Stiefel (1959) developed a method called the

"exchange method" for finding L norm estimates, and he later (1960)

established the equivalence of the method to the simplex procedure.

Harter (1975) and Stiefel (1964) discuss the historical development

of the L norm estimation procedure, and Appa and Smith (1973) iden-

tify a number of important properties.

It is generally accepted that some form of linear programing
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algorithm provides the most efficient way to determine the L. norm

estimates. The purpose of this paper is to.present 
a specialized

dual linear programming algorithm for obtaining a Chebychev

approximation to an overdetermined 
system of linear equations for

the model C = AT + . The algorithm uses a reduced basis, 
multi-

ple pivots, and a reduced ratio test.

?:
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1.1 Statement of the problem

The general L. norm problem may be characterized in the follow-

ing way. Let (ci , ail , ai2 ,..., i = I, 2,...,n represent

the values observed during n repetitions of an experiment, where c

is a vector of observed values of the dependent variable and the a's

are the observed values of the independent variables (the predictor

variables). The objective is to determine estimates
for the parameters = (Bi, 2,  which solve the problem:

(1) Minimize the-value of

= maximum{tc i - ail$, - ai2a2 - aim~mll,

- i = 1,2,...,

It is a well-known result that (1) may be expressed in a linear pro-

gramming formulation (L. P.) as follows:

Z (2) Minimize X~m

subject to ci < E ai j -ci + X , i = 1,2,...,n

where the optimal estimates of 0 will minimize the maximum deviation
~(X).

In matrix notation, the constraints of (2) are

(3) c - e) <AT<c + eX

where e is a vector of ones and AT is an n by m matrix.AT

It is assumed that A has full column rank: that is,

rank (A') = m. Rank deficiencies can easily be handled within the

linear programing framework (see, for instance, Ben-Israel and

Charnes (1968)), and will not be reviewed here. Each interval con-

straint may be written as two constraints which, when combined

LV
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with the objective function, results in the following problem.

14) Minimize X

subject to AT6 + eX C

T
A a- eX <C

The linear programing dual of (4) may be written as

(5) Maximize cT' + CT"

subject to A lr' + A, '' = 0

eir - eir

it' > 0 ,ir" < 0
Problem (5) may, of course, be solved using the traditional

simplex method, which will be discussed in the next section. This

discussion is not meant to be a complete description of linear prog-

ramming, but rather is intended to establish notation and terminology.

A short summary of the simplex method follows.

Given a basic feasible solution, correspondinr to an extreme

point of the solution space, a nonbasic variable is selected to enter

the basis. (In this paper the usual terminology will be employed, where

a variable is said to enter (or leave) the basis when, in fact, it is

the vector associated with the variable which enters (or leaves) the

basis. for the vector space Rm+1.) The variable selected to enter the

basis is a variable whose corresponding constraint in the dual of the

problem being discussed violates feasibility. (In the example of this

paper, for an entering variable of problem (5), the corresponding

constraint of problem (4) would be infeasible.) The variable to leave

the basis is selected by determining the minimum of a set of ratios,

_ _ _ _ml



where the leaving variable is the first variable to become in-

feasible as the value cf the entering variable changes.

The new set of basic variables differs by one from the pre-

ceeding set, and a new extreme point (-;gnoring degeneracy) in the

~solution space is represented by the basis. Since a finite number

of extreme points exist in the solution space, and an iteration as

FE-described above moves from one extreme point to an adjacent (ira-

proving) extreme point, the algorithm will converge to an optimal i

solution in a finite number of steps. The convergence difficul-

~ties that arise when degeneracy is present will not be discussed!

in this paper. The reader is referred to Charnes (1952) for a

discussion of the resolution to the problem of degeneracy. In

~~the next section, the steps of the general algorithm described

~~here will be discussed further. i

i--
-- o- t
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2. General Linear Programning Approach

Prior to describing the general L. P. approach and the

specific algorithm presented here, a number of terms are defined.

(,N'ote that the omission of a prime or double prime on a term which

usually has one or the other indicates the term applies to both the

prime and the double prime cases.)

The n constraints of (2) are denoted as "variable

interval* (VI) constraints. This terminology arises

from the fact that the bounds on the interval may be

expanded by increasing ).

n = the number of variable interval constraints in the

primal problem (2);

A. = the m-dimensional column vector for the j-th

column of A, where A.3 is the same for both

w'. and r! ;

A = the (m+l)-dimensional augmented column vector for

!, where a +1 is appended to the vector A.j ;

M'-= the augmented vector for ir , where a -1 is
.3 3

appended to the vector A.

U
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k(i) = the index for the i-th basic variable, i = 1,2,...,

.m+l. That is, if either r' or ir" is basic at the i-thr r

position, k(i) = r ;

F = the (rn+l) by (m+l) basis for the dual problem (5) ;

b = the original right hand.side for the dual problem (5),

t. (0, 0 ,...,o 1 )T

b = the (m+l)-dimensional updated right hand side of

(5), b F b

= an (m'l)-dimensional vector of the original objec-

tive function coefficients for the basic variables

of problem (5) ;

C. = the original objective function coefficient in the

dual problem (5) for 7r' and for w"

= the reduced cost for ir

= the reduced cost for 7r. "

y. the representation of A.' in terms of the basis F,

so that y' = FI1 ;

= the representation of A.j ,! = F'

NB' = {iir' is nonbasici , the index set for nonbasic
3

variables of the type ir ;

NB" = {i l is nonbasic}

NB = NB'UNB"

A = the value of the objective function;

B = the parameters to estimate in the primal problem (4).

- -~ - -
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2.1 Steps of the general L. P. simplex method.

Given a basic feasible solution, the steps of the general L. P.

simplex problem may be stated as follows.

Step 1. Compute the reduced costs for nonbasic variables;

a. c TF-I A , formi ,jeNSI

b. c 1 '" , for it jcNB"b. C .- A .

c. select the variable to enter corresponding to

max {E., > 0 ;- , < 01
JeNB

d. ifc < 0 and > 0 for all j, terminate with the

optimal solution;

Step 2. Compute the representation for its , the entering variable

a. Y I  for 7' entering the basis ;

b. Y.s F A" for it" entering the basis ;"s

Step 3. Compute the updated right hand side

a. b F b

Step 4. Select as the variable to leave the basis that variable

corresponding to the minimum ratio

a. if it' is the entering variable,
S

L&rin > 0 ,j 1*I 2, ... , m+l( min
yis j Yjs

b. if n" is the entering variable,

b.
min ,L j < 0 , j = 1, 2, ... , m

St c. if the minimum occurs for J r , (r) leaves the basis
Step 5. Update F- , CjF l , k(r), NB' and NB". Go to Step 1.
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3. Reduced Basis Structure

This section discusses how the full tableau data may be repre-

sented with a reduced basis. The traditional approach of the prior

section for solving the L. P. problem (5) may be altered in the follow-

ing ways. Instead of using the (m+l) by (r+l) matrix F to solve the

system of equations, an m by m basis way be isolated to perform

the usual simplex steps. The primary purpose of this paper is to show

how the reduced basis may be efficiently used to solve (5).

Throughout the paper, a distinction will be made between two

problem structures: the full structure which has (mrl) basic variables,

this structure corresponds to the regular simplex tableau; and the re-

duced structure with m basic variables, which are the first m of the

basic variables in the full structure. Consequently, there are two

representations for a nonbasic variable. One representation is in terms

of the (mr-l) basic variables of the full structure and the other is in

terms of the m basic variables of the reduced structure.

Several advantages become evident when the reduced basis

structure is used. The usual simplex steps may be performed in terms

of the reduced basis, and a reduced minimum ratio procedure is pre-

sented which provides a simpler- ratio formulation, and which may result

in fewer ratios computed than in the full tableau. Multiple pivots may

be performed, where a multiple pivot allows a movement to an adjacent

extreme point without updating the basis.
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3.1 Partitioning

The proposal is to construct a reduced basis with which to perform

the simplex operations. Since the basis, F, for the full structure (5)

has linearly independent columns, it may be partitioned in the follow-

ing manner:

B = the m by m basis for the reduced structure. The columns of

B are those columns of A corresponding to the first m basic

FA variables of the full structure;

G = the m-dimensional column vector of A corresponding to the

(m+l)-st basic variable in the full structure, so that

G = A

D = the row vector for the (m+l)-st row of F, so that

Di =I i for 1 < i < m;
1-1 if IT" is basic

k (i)

f = the (m+l)-st element of the column Athe ml) associated
.k(m+1)

with the (m+l)-st basic variable in the full structure,

so that

I i f lr' is basicf (re+1)

if kr" is oasic

Note that appending Di to B.i gives A.k(i)' i = 1,2,...,m, and

appending f to G gives A

--~~~- -A-~- ~ ~-=-
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Then

F f

where B is m by mn, 0 i s 1 by mn si y1 adfI clr

Let F1l ( N) and FF-1

Then,

The components of F' may be written as

M = (B1- 0)1D 1  N =-MGf
1  = (B-G

E .f1 DM f = 1 - 1  N.

-kF_________________________________
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3.2 Updated Right Hand Side

The right hand side values for the basic variables in the full

structure may be described as follows:

b the value for iTk ' I = 1,2,...,(nwl)

where b = F-lb.

To facilitate the partitioning, b ma e eartd sb hr

is the first m entries of b and W is the (m+l)-st entry of b.

The goal is to write b (" W)T in terms of the reduced basis B. It
1 A A

has been previously noted that F b = b, so Fb = b . Then, using

the partitioning of F from the previous section, and the separation

of b into and W

Performing the multiplication,

Bb + GW= 0

Db + fN = 1

However, G A.k(m+l) so that

1 k (2 ~) a k(M+1)

where is defined to be the m-dimensional representation for

?rk(l) in terms of the reduced basis B. For notational conveni-

ence, let

R = a~k(mli)

To continue,

B = GW 0

F B -GW -8 1A W w-RW. (m+1) .k(m+l)

F -W
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Also,,

Ob +f N 1 (-RW) +f N I W(f -DR) 1.

For notational convenience, define

sumr = (f-ODR)

so W(f -DR) = 1 , W(sumr) I

thus W = 1/sumr

To sunmarize, the right hand side values for the basic variables,

written in terms of the reduced basis 8, are

(-RW) /sur2

I / --- -
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w
3.3 Selection of the Entering Variable

The reduced cost, E' or , for a variable may be described as

the change in the objective function value per unit change in the value

of the entering variable. The convevgence of the simplex algorithm

depends only on selecting a variable to enter the basis which has a

positive rate of change; however, the implementation used here selects

as the entering variable that variable which has the largest rate of

change.

The reduced costs may be computed by

c A TF-I,
j J F j
= cj -CF c

and the largest rate of change corresponds to

max 0, --I nt
J eNB 3 , c , .

The optimality conditions are c'. < 0 and > 0 , for every J NB,

in which case the algorithm terminates with the optimal solution. The

optimality conditions for this dual problem (5) are related to the

feasibility conditions for the primal problem (4) , in the sense that

selecting the entering variable with the largest rate of change in

) is tantamount to bringing feasibility to the primal constraint which

is most infeasible with the current solution.

-Z--
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L 3.4 Representation of the Entering Variable

Suppose the method o, the previous section has selected ff as

the entering variable. The following introduces additional notation.

a.s = the first m elements in the representation for irs, which

is Y.s, in terms of the full basis F ;

V = the (m+l)-st element in the representation for is in

terms of the full basis F -

S =,= the m-dimensional representation for ir in terms of the

reduced basis B, so that B-A = a.

Since the augmented column vectors for rn' and r" andA" differ

only in the last element, which is defined to be o then either y'

or y% (the representations in terms of the full basis F for 7r' and
Sbai F

70) may be partitioned as (a V) T where the sign of g determines

which of A' or Al is being represented.

Then using the partitioned version of F, and separating y

into (a.s V)T , we have

G)a s C.S)

so that the element g may be defined as

I i if  ' is entering the basis

1 if 7is entering the basis

-__ Performing the multiplication,

Ba + GV = ASS S
Da. +fV = g

jy
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Solving the first equation for a.

a B= - GY) - B 1 -GV

a = B-1A. - A k l V
a .5 a km+l1)

A

Da + flJ g

D(S - RV) + fV 9

DS + '(f-ODR) g.

Recalling tt~at W 1 /(f - OR) 1 /sumr,

then OS + V/W =9

V/W g - OS

Define sums D S

then V/W sums

V =sums/sumr

Therefore, the representation for it in terms of the full structure

S a Sa V) Twhich has now been written in terims of the reduced

basis, so that

a S RV
\wsj v \v s s/sumr/
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4. Simplification with the reduced structure

Solving the du )roblem (5) using the reduced basis B offers

several advantages, wh. i will be discussed in this section.

The original primal problem (3) had n interval

constraints which were separated into 2n constraints, so the dual

problem (5) has 2n structural variables. However, there are n pairs

of variables, if' and ir' , for which the A.J vector is identical, and
) 3

the augmented vectors of A.. , A. andA ., differ only in the entry

in the (m+l)-st (last) element. To exploit this pairing, the algorithm

computes reduced costs for n-(m+l) rather than for 2n-(m+l) nonbasic

variables. For any pair 7r! and i';' the reduced costs
I

differ by 2X , since A.j and Aj differ only in the sign of the ""

in the last entry.

Additionally, selection of the variable to leave the basis may

be simplified using the reduced structure. The minimum of ratios of

the form Ri/S i will designate the leaving variable, and some of the

ratios may be ignored, since it may be anticipated they will not be

the minimum.

Also, a multiple pivot may be performed, which includes a

"pivot" where the basis is not changed in the reduced structure

(although in the full structure a basis change would occur). This

exchange of variables does not affect the basis and therefore re-

sults in a savings in computation.

i--

____ ___________
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AThe reduced structure has m basic variables but the (m+l)-st

basic variable in the full structure, -ff will be treated as a

pseudo-basic variable in the reduced structure. For convenience, the

variable will be denoted by iTk(m+l) in the reduced structure just as

it is in the full structure. This variable will play a role in the

reduced structure as though it were basic, in the sense that a variable,

it' entering the basis in the reduced structure will replace a current

basic variable if possible, and otherwise will replace rk(m+l) " If

' klm+l) is replaced by ns' no basis change occurs in the reduced

structure, although in the full structure an explicit basis change

would occur. Treating the variable ik(M+1) as a pseudo-basic

variable in this fashion enables the same extreme point path to be

followed in the reduced structure as is followed in the full structure.

& -E--
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4.1 Computing the Reduced Costs

Using the reduced structure may result in some simplification

when determining the reduced costs of the dual problem (5). To see this,

we consider the primal problem (4). In essence, the procedure will be

to compare the i-th residual from the fitted plane (for the current

values of S) to the current value of X. This is analagous to computing,

in the primal problem (4), the amount of infeasibility of a particular

constraint.

To aid in the discussion of the computation of the reduced

costs, the following terms are defined.

is the reduced cost for the j-th nonbasic variable,

which may correspond to either ir' or it"

depending on the sign of the ,?sidual;

hj =c - aTA.j, so that h- is the j-th

residual from the fitted line a~ = (a,$, + ae2

then,

a. c~ lc~ a- .

c3  I h. I-X.
If h4 > 0 ,E is the reduced cost for ir' ;

If h. < 0 ,- is the reduced cost for w" ;

1. suppose hj > 0, so only n! will be a candidate. This

2-
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means that the point (a..,aj aj,... a )

on the fitted plane (which will be called the fit) is

below the observed point (cj,alj,a2j,...,amj). If

h X > 0, then the fit is below the bound c - A;

thus, the primal constraint c. - A < T is infeasible,

and is the dual variable associated with this

constraint. If h. - X <0, the fit is within the

-interval bounds and the constraint is feasible.

2. For the case where h. = cj - 8TA.j <0, similar
3 3j

reasoning suggests that Z- is the reduced cost for T'!,

and the reduced cost for 7T may be ignored, as its

associated constraint in (2) must be satisfied.

Then, the variable selected to enter the basis is the variable corres-

ponding to

max {Ej},for cj > 0,

jdJMfn NB"

and terminate with the optimal solution if no maximum exists.

(In relating the reduced costs described above to those encountered in

the full tableau, the sign of 'E, when Ej refers to " , will be nega-

tive in the tableau but positive in this algorithm.)

Note that when t is basic (either T' or 7"), the reduced

cost for its nonbasic complement t (either it" or 7r') is not considered.
p P p
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This will be discussed in detail in the multiple pivot section, whereI the procedure is given which determines when the complement of a basic

F variable should be consiuered a candidate to enter the basis.
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4.2 Ratios Using the Reduced Basis

In this section it will be shown that utilizing the reduced

basis may result in the computation of fewer ratios, and that the ratio

test procedure of the reduced structure (computing ratios of the form
R./Si ) is equivalent to the procedure of the full structure, in the
ii

sense that both procedures select the same variable to leave the basis.

Prior to the discussion of the ratios, it may be helpful to

summarize some of the previous results. The following is a partial

tableau for the full structure, where the entries are written in terms

of the reduced basis.

Basis l's RHS Ratios

-k(l) S -RIV -R1/sumr (-R1/sumr)/(S I -R1 (sums/sumr))

'k -) S2-R2 V -R2/sur (-R2/sumr) / (S2-R2 (sums/sumr))
. . . •

,kfm) Sm-RmV -ysumr (-R,/sumr)I(Sm-Rm(sums/sumr))

"k(m+1) V= su l/sumr I/sums

The i-th ratio in the reduced structure is of the form Ri/S i ,

and if Rt/St is the minimum ratio in the reduced structure, then the

corresponding variable, ik(t) " is selected to leave the basis.

Two variables, ir and ir. , will be said to be the same type of

variable if both are restricted to be > 0 (that is, n'. and 'ir) or if

both are restricted to be < 0 (such as ,T" or 7r"). The following function

3. 3

iA -
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is defined to determine the sign of a auantity E:

sign( ) =
- if < <0

The above sign function will be used to determine which of

the ratios, Ri/Si , should be candidates and which may be ignored.I(For convenience, the following two statements will be considered
equivalent:

(1) a ratio will be considered a candidate...; and

(2) the variable associated with a ratio will be considered

a candidate...).

_Recall the scalar f is the (m+)-st element in the vector

A.k(+1) , and f is either +1 (for ' ) or -1 (for ir
k(M+1) k(M+1)

__ Recall also that g is the (m+l)-st element in the vector

A5 , and g is either +1 (for S') or -1 (for i" )

Then, the i-th ratio in the reduced problem, Ri/Si , will be con-

__sidered a candidate when

fg = -sign(Ri) * sign(Si) , Si # 0

If this condition fails, the associated ratio need not be consid-

ered (nor computed), since the ratio will not be the minimum. In

the computer code, an equivalent condition must be satisfied for

a ratio to be considered a candidate:

Dig = sign (Si)
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For convenience in isolating terms, the ratio

(-Ri/sumr)! (Si-Risums/sumr)

will be written as

1/((-Si/R.(sumr + sums)), Rt i 0

When Ri = 0, the results which follow concerning the relationship

between the reduced and full ratios follow in a trivial manner.

To show that the reduced ratio test is equivalent to the

regular ratio test in the full structure, four lemmas will be

presented. For each lemma, only che case where is in the

basis and 7r" is the entering variable will be considered. The

other three cases follow similar logic. Since rk(M+l) is basic,

and variables of the type n' are restricted to be nonnegative,

then sumr > 0 because l - l/sumr > 0. Since Tr" is the' k( m+ I) s

entering variable, only variables associated with negative ratios

will be candidates to leave the basis. Further, because

and n" are different types, the i-th ratio in the reduced struc-

ture will be a candidate only when the signs of Ri and S. are the

same.

Lemma 1

-A If the i-th ratio in the reduced structure is a candidate,

and the corresponding i-th ratio in the full structure is a candi-

date, then the (m+l)-st ratio is not the minimum ratio for the full

structure.

Proof

If the (m+l)-st ratio in the full structure is not a candidate
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the lemma is satisfied. If the (m+l)-st ratio is a candidate, sums is

negative, since the (m+l)-st ratio is 1/sums, and only negative ratios

may be considered. If the i-th ratio in the reduced structure is a

candidate, the signs of R and Si are the same. Thenthe corresponding

i-th ratio of the full structure is related to the (m+l)-st ratio of

the full structure by
1 l ,R i  0,

(-Si/R i)sumr + sums 1 ims
AL since both terms in the denominator of the i-th ratio are negative.

This result establishes lemma 1.

Lemma 2

If the i-th ratio in the reduced structure, Ri/Si , is not a

candidate, but the corresponding i-th ratio in the full structure is a

candidate, then the i-th ratio in the full structure is not the minimum

ratio in the full structure.

Proof

Since the i-th reduced ratio is not a candidate, the signs of

R and Si are different, which means the first term in the denominator

of

-(-S /Ri)sumr + sums

is positive, and this requires sums to be negative for the i-th full

ratio to be a candidate. Because sums is negative, the (m+l)-st full

ratio is a candidate, so that the i-th and (m+l)-st ratios in the full

problem are related by

SRi)sumr + sums sums

* This proves lemma 2.
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Lemma 3

If the i-th ratio in the reduced structure is a candidate but

the i-th ratio in the full structure is not, then the i-th ratio in the

reduced structure is not the minimum of the reduced ratios.

P roof

If the i-th reduced ratio is a candidate, the signs of R and S

are the same and Si0 0, For the i-th ratio in the full structure to not

be a candidate, the ratio must be positive, so that

(-Si/Ri)sumr + sums

The first term in the denominator is negative, which requires that

sums > 0 , so that

(S./R.)sumr < sums, and

(Ri/S i) > (sumr/sums).

Since the i-th reduced ratio is a candidate, and the i-th full ratio

is not, the (m+l)-st ratio, I/sums , cannot be a candidate because

only negative ratios may be eligible, and sums is required to be

positive to insure the i-th full ratio is not a candidate. Therefore,

since the i-th and (m+l)-st ratios are not candidates in the full

structure, some other ratio in the full structure, call it the j-th

ratio, must be a candidate. Then
7 - < O, R 0

(-S ./R )sumr + sums

Since sums > 0, the first term in the denominator must be negative,

which requires that Rj and Si have the same signs, which means the j-th

j9"A
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reduced ratio is a candidate. Because the j-th full ratio must be

negative (for it to be a candidate),

33(-S/Rj)sumri > sums

r (S./R )sumr > sums ,

(R./S.) < (sums/sumr) , R. , S. , sumr € 0[ Thus the relationship between the i-th and j-th ratios of the full

~structure is

(Rj/Sj) < (sumsisumr) < (Ri/S i)

K -and this result proves the lenma.

Lemmna 4

Suppose the i-th and j-th ratios in the reduced structure are

candidates, and the corresponding i-th and j-th ratios in the full

structure are candidates. If the absolute value of the i-th reduced

ratio is smaller than the absolute value of the j-th reduced ratio,

then the same relation holds in the full structure.

Proof

Let IRi/SiI < IRj/Sjl , which means for the case being con-

sidered that Ri/S i < R./S., since the ratios are positive. For the

full structure, the corresponding i-th and j-th ratios are
I I  Jand ( 1

j(-Si/Ri)sumr + sums (-S /R )sumr + sums f
Sumr is positive since it' = l/sumr is basic. Since both the i-th

and j-th reduced ratios are candidates, the first term in the denomin-

ator of both full ratios is negative (the signs of Ri and S. are the
1 1

same). Both full ratios are negative, since both are candidates, and

it is 7r" which is entering the basis. Therefore, for each full ratio,
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either sums is negative, or sums is positive, but less than the abso-

lute value of the first term in the denominator. In either case, sums

may be ignored.

Since Ri/S i < R./S. , then Si/R i > S./R. , so that

- l1(_SilRi)sumrj > j(-S /R )sumri ,

which means that

1 1TF- S l-ilRi)sumrl 1 (-Sil/R i)sumr I

and therefore the i-th and j-th full ratios are related by

(-Si/Ri)sumr + sums <(-S/R )sumr + sums

*I~ ~ 'I 1

which proves the lema.

Theorem

The ratio test procedure described for the reduced structure

is equivalent to the ratio test procedure for the full structure, in

the sense that both procedures will select the same variable to leave

the basis.

Proof.

It follows from lemmas 1 and 3 that the .(m+l)-st ratio of the

full structure wii! be the minimum ratio when none of the reduced

ratios are candidates. Otherwise, from lemmas 2 and 3 it can be

ascertained that only ratios which are candidates in both the reduced

and full structures will provide the minimums for the respective

structures. Furthermore, lemma 4 guarantees that these minimums will

occur at the same position in the reduced and full structures.
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4.3 Multiple pivots

The general idea of a multiple pivot is that when a variable,

say 7s' enters the basis in place of a current basic variable, say 7r

E the increase in the objective function value, X, may be sufficient to

cause the complement of 7r (call it i ) to become eligible to enter
P

the basis. The word complement will be used in the sense that the

complement of 1' is ir" and vice versa. (When 1T becomes a candidate
p p p

in this dual problem, this means the corresponding constraint in the

primal problem (2), which was binding at one bound becomes infeasible

at the opposite bound.) Since, for this case, 7t would become a can-
p

didate to enter at the next iteration if iT enters now, the algorithm
brings i into the basis immediately in place of it , and 7t is still

a candidate to enter in place of some other basic variable. This

results in a computational saving, since the represent Lions of it
AP

and it are identical in terms of the reduced basis B, thus no basisp
change occurs for the reduced structure.

For this discussion, it is assumed that it has been selected
S

to enter the basis in place of it (where 7t may be 7r' or iT", andp s s
similarly for it ), and that i = nk (t), 1 < t < m , the t-th basic

p p
variable. The representation for 7r in the full structure is a unit

p
vector, but the representation for its complement, It, may be obtain-

ed in a manner similar to that used to find the representation for

ITs, so the discussion is abbreviated.
SA

Let B G) (a.A
=,where .p Ap( D f L AP
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A

The results of the multiplication and solving for a. and L are

a.p = (P - RL)

L = sump/sumr

sump = 2 - OP

P = a.p, the representation for wP (and i ) in terms of

the reduced basis B ,

(1 ifir is 7r'£ =P P

1-i if w is n"
SP p

Then, a partial tableau for the full problem, written in terms of the

reduced basis B, is shown below.
A

Basic .T IT _1 RHS

x c 2A 0 F

'k(1) PI - RIL 0 S- RlV -R1/sumr

ik(t)'r Pt - RtL 0 St - RtV -Rt/sumr

', L =0 V sm l/sumr
1Tk(m+l) L sumr SUM 1 sr

(Note that P= 0, 1 t ,and P= , since A is the t-th

column of B and P B Ak(t)

Since -s has been selected to enter the basis in place of
A

7p the change in X, 6, which will result when w enters the basis is

!P



31

lrs/(-Rt/sumr)/(St RtV) j: -E5 sumr-= I-Es/SUmS !

This movement in X , 6 , may be sufficient to cause 7r to become a
p

candidate to enter the basis. The minimum change in x , * which

will enable 7r to become a candidate may be shown to be

p
6* = 2X ((-Rt/sumr)/(Pt-RtL))

__ which, with a few sign changes and substitutions, may be rewritten

6* = -2XRt/(2Rt + £sumr)

Therefore,

_ a. if 6 < 6* , this implies that when Tr enters the basis,

the change in X is not sufficient to cause Tr to become
p

a candidate to enter the basis. Thus, iv replaces iv in
i sp

the basis and the usual update operations take place.

V-. b. if 6* < ,this implies that if 7r enters the basis in

place of 7 , the change in X would be sufficient to

cause ir to become a candidate to enter the basis at the
p

next iteration. Therefore, T enters immediately in
p

place of 7v and 7r is still a candidate to replace some

other variable.

This multiple pivot strategy will not be employed when the

leaving variable is iTk(m+l) , since if the complement of 7krml) is

brought into the basis, the algorithm finds the nonbasic variable

corresponding to the next minimum ratio, and 7r then replaces this

next variable, and the basis is updated. Howe% the work

_--4
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associated with finding the next smallest ratio and then per-

forming a pivot is more than for the case where the complement of

( k(+l) does not enter the basis, and a multiple pivot is not per-

hformed.

The multiple pivot strategy may save considerable compu-

tation. As evidenced by the results of the computational exper-

ience, the occasions for multiple pivots occur between 17% and 42%

of the time, depending on the problem size.
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4.4 Steps for the Reduced Structure

In this section, the steps of the algorithm discussed in

prior sections are summarized. Initially assume that a basic

feasible solution is at hand.

a. the parameters to estimate in the primal problem (4)

are the B's, which are initially computed by CBB

b. the value of the objective function, X , may be initially

computed by

X = Ics/sumsl .

The initial situation is that a reduced basis for (5),

consisting of m variables is obtained. The full structure

has m+l basic variables and the (m+l)-st variable,

7km+1) , is a slack variable. Recall that the variable

iN klm+) is to be treated as a pseudo-basic variable in

the reduced structure, and at this juncture, the variable

to be called ik(ml in the reduced structure has not

been selected. On the basis of reduced costs, suppose

___ is determined to be elig.ible to enter the basis.

Instead of replacing a current basic variable in the _

reduced structure, iT will become the variable calleds

7rkli) ' and X must be adjusted to make this variable

"basic." In the full structure, however, the entering

variable ir does replace the basic slack (artificial)

variable in the (m+l)-st position. Since initially the

tN



34

first m basic variables in the full structure equal zero

(and ik(,l) equals one), either k(t) or k(t)

1 < t < m , may be selected to be basic. By proper

choice of i(t) or ,"(t) as basic variables, the ratio

for the slack variable may be forced to be minimum, so

that the entering ir will replace the slack rk(m+l) as

desired. After the slack variable leaves the basis,

the iterative process begins.

Step 1. Cor.pute the reduced costs

- ITa. =3 Icj - a A.jl-X = ihj-X.

1. if h. > 0 , c is the reduced cost for T'
3 3 )

2. if hj < 0 , --- is the reduced cost for -"
3 3 J

b. determine

max tf j} for Ej > 0
jeNB'fn NB"

and let the variable associated with this stipulation

be zrs , the variable to enter the basis. If cj < 0

for all j, terminate with the optimal solution.

- -
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Step 2. Compute the reduced ratios to determine the leaving variable.

Compute:[=_ min Si}  , i = 1,2,...,m,

_ and consider Rt/St a candidate if fg = -sign(Rt) * sign (St)

_ and St 0.

There are two cases which may occur:

___ a. if the minimum ratio is R ,/St leaves the reduced

basis, I < t < m;

b. if none of the ratios is a candidate, the entering

variable replaces the pseudo-basic variable k(m+1)I
and no basis change occurs. In the full structure, of

course, an explicit basis change occurs as .r replaces

the basic variable k(m+l)

Step 3. Update the value of -

Let A be the current value of 3 and rr has been selected asS

the entering variable. There are three cases to consider.

a. If the variable leaving the basis (of either the reducedP or full structure) isirk(t < t< m , then

T -+ I -Es(-Rt)/(Stsumr - Rtsums)l

b. If the variable being replaced is -.k(T 1)

T + I 'Es/SU,,sl

c. For the case where a multiple pivot occurs, the process

for updating X is more complicated. Suppose the com-

plement of a current basic variable enters the basis,
Asay ir9 replaces ir (which in the full structure would be
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described by k(t) = p, 1 < t < m.

1. When the exchange occurs (,rP replacing .r), , is

updated by computing

* A - 2ARt/(2Rt + Isumr),

and c. is updated by

C5s- s -*Isums - (St/Rt)umrt.

2. After this exchange and updating, the iteration is

still not complete since the variable 7r, which was

to have replaced r • must now enter the basis in

place of some other basic variable. To effect this,

the next smallest ratio is determined (,r had the
p

minimum ratio previously), and the variable associat-

ed with this next smallest ratio is replaced by ir

Then A is further updated to reflect this change.

There are three cases to consider.

a) If rk(t) , < t < m is replaced by ws

X 4X + IEs(-Rt)/(Stsumr - Rtsums)I ;

b) If w replaces the pseudo-basic variable (e

in the reduced structure (and in the full

structure w replaces the basic variable 7r

in an explicit basis change), then

X X + s/sums ;
s
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C) If a multiple pivot occurs here (within a

multiple pivot), the process as described above

repeats.

Step 3. Update the values of 6 by computing
T

0 =(CB +X)B

Go to Step 1.
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5.0 Computational Results

The special-purpose algorithm for obtaining L. norm

estimates of the parameters for the model C AT n + c is compared

to the published algorithm of Barrodale and Phillips (1975).

Our algorithm has been coded in FORTRAN as a callable subroutine,

which requires an n-dimensional array and an n by m matrix for

the input data, an m by ii matrix for the LU decomposition, and

six m-dimensional arrays.

An LU decomposition procedure is used to solve the j
system of equations, and since much of the original data are

preserved, the incidence of round-off error is diminished.

All runs were performed on a CDC 6600 with a sixty bit word, f
the tolerance value for zero was set at 1.E-8, and the runs

were made within a few minutes of each other, so the machine

load was -approximately the same. The reported times were from

using the MNF compiler, although the algorithms were tested

using the FTN and RUN compilers as well. The IMSL Library was

utilized to generate an array (n-dimensional) for the dependent

variable C, and an m by n matrix A, containing data which were

randomly drawn from a uniform distribution. For each problem .

size (each combination of m and n), the reported time is an

average of 5 problems. The results are summarized in table 1.

Our code is denoted AS and the Barrodale and Phillips code is

denoted BP.

°°F
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TABLE 1: A summary of computational testing comparing the

Q special-purpose dual method algorithm (AS) and the Barrodale and

_k Phillips algorithm (BP) is given. Five problems were solved at

each level and the reported times are the means of the results

in milliseconds, using a CDC 6600. The average number of

iterations is also reported.

Average
Problem Execution Time Number of
Size (milliseconds) Ratio Iterations
m n AS BP BP/AS AS BP
5 200 88 408 4.64 8 14.6

400 183 830 4.54 9.8 .15.0
600 317 1479 4.67 11.8 18.0
800 378 1835 4.85 10.6 16.6

1000 530 2441 4.61 11.4 17.8
10 200 429 1090 2.54 22.0 25.6400 714 2687 3.76 26.4 31.8

600 957 4528 4.73 26.0 36.0
800 1285 5721 4.45 27.2 34.0
1000 1769 7/49 4.38 28.2 36.8

15 200 1163 2820 2.42 34.0 49.6
400 1820 6345 3.49 38.2 56.0600 2469 9859 3.99 40.6 58.2

800 3421 13,460 3.93 46.0 59.4
1000 4049 17,867 4.41 47.6 63.4

20 200 2733 4303 1.57 49.0 60.0

400 3863 9936 2.57 53.0 69.4
600 5542 16,585 2.99 61.8 77.4
800 6755 23,128 3.42 64.4 81.0

1000 8206 29,312 3.57 67.0 82.2

_ _ _ _ _
-- I
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[ Conclus ions:

In this paper we have presented an algorithm and FORTRAN

code for determining L norm parameter estimates for the curve

fitting model C = A T + e. This algorithm is a special-purpose

linear progranning dual method, and the code is compared to

the special-purpose code of Barrodale and Phillips.

We have indicated how to partition the A matrix to

form a compact or reduced basis, and how the usual simplex

tableau entries may be written in terms of this reduced basis.

Special ratios are developed for determining the vector to

leave the basis, which are of a simplier structure than the

usual simplex ratios. A multiple pivot is developed, where

movement is made to a new extreme point solution without

requiring the usual basis update computations.

3i
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